「这样的忘记网络(forgetting system)必须仔细跟踪数据沿袭,甚至需要跨统计处理或机器学习,并使该沿袭对用户可见,」来自利哈伊大学和哥伦比亚大学的计算机科学教授 Yinzhi Cao 和 Junfeng Yang 写道,「他们让用户使用不用的粒度(granularity)水平指定要遗忘的数据……然后这些系统移除这些数据并还原其所带来的影响,这样今后所有的操作都会像该数据从未存在过一样。」
Cao 和 Yang 在 2015 年的一篇论文中阐述了他们对该系统的想法,该论文与2015年发表在IEEE的期刊 Security & Privacy上。他们说,从一个更大的集合中擦除一个单独的数据线程具有很多潜在的效益。一些人可以从一台机器上移除他们的敏感个人数据。学者可以使用忘记(unlearning)来清理或矫正分析数据,从而开发出更为精确的预测算法。
这种操作数据的能力可以被看做是它自身的安全威胁——比如说,如果数据被恶意篡改——但 Cao 表示,将有保护措施。比如:「在欧盟,移除与某人相关的的搜索结果之前,谷歌需要请求者的带照片的身份证明的扫描件。」他在一封电子邮件中说,「这只是验证的一种方法,还有其它方法涉及到用户名/密码、双因素认证、指纹等等。」
这一想法已经让计算机科学家们感到兴奋了。Cao 和 Yang 接受了美国国家科学基金会 120 万美元的资助以进一步发展这一概念。如果他们取得了成功,并且如果机器忘记真的可以像 Cao 和 Yang 建议的那样,变成了一个至关重要且无处不在的计算功能,那么忘记系统(forgetting system)对人们思考人脑处理功能的方式又意味着什么呢?大概并不会有太多含义,直到新技术出现并提供一个更具说服力的类比。
「我们对大脑还有很多不理解,但我们确实知道他们并不神奇。」纽约大学心理学和神经科学教授 Gary Marcus 去年在《纽约时报》上写道,「它们只是物质的异常复杂的排布。飞机可能飞起来并不像鸟,但它们都遵循于同样的力进行升降。同样道理,也没有理由认为大脑可以免受计算定律的约束。」
人类-机器的比喻从不完美,但它们可以是有用的,即使计算机可以以人类所不能的方式学习和忘记。「我们想用由这些巨型计算机器提供的概念模型做更多事,」文化人类学家 Margaret Mead 在 1948 年谈论计算机时说道,据 Ronald Kline 的著作 《The Cybernetics Moment》,「说人的身体是一台机器没有什么陷阱,而只是这些方法,尤其是数学家在这些机器问题中所使用的方法,可能是可用于更精确思考人类行为的工具。」